
h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

The Java Isolation API:
Introduction, applications and inspiration

Doug Lea
SUNY Oswego

dl@cs.oswego.edu

Pete Soper
Sun Microsystems

pete.soper@sun.com

Miles Sabin
miles@milessabin.com

June 23, 2004

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Overview
• Isolate noun. pronounciation: isolet. 1. A thing that

has been isolated, as by geographic, ecologic or social
barriers - American Heritage Dictionary

Outline

Motivation

Some design and implementation issues

API overview and code examples

Application to mobility

Relationship to the -calculus

Status

Public review draft in JSR-121 was aimed at J2SE 1.5,
now planning 2nd public draft aimed at J2SE & J2ME.

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Aggregates vs Isolates vs Threads

class reps
statics,
heap

bytecodes

th
re

ad

th
re

ad

th
re

ad

exec code
statics,
heap

Aggregate

anIsolate

another
Isolate

possibly shared
run- time data

link

RMI etc
Aggregate

each isolate acts as a separate
logical virtual machine

OS resources
and services

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Motivation
Performance

Reduce footprint, start-up overheads for running
independent programs

Security

Prevent interference via shared resources or
communication

Simplify construction of obviously secure systems

Management

Configure, monitor and kill activities without disrupting
others

Especially in container frameworks

Stay within Java; not OS via Runtime.exec

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

JVMs vs Aggregates
Not necessarily a "single program" anymore

Each Isolate is a logical virtual machine

A JVM is,

A running instance of the JRE

Strong associations with a single OS process

An Aggregate is,

A container of Isolates

An administrative and management boundary

A set of services and service guarantees
Bytecode execution and run-time functions

Aggregate as a less ambiguous term

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Isolating State
Visible Per-Aggregate vs per-Isolate state

Case-by-case analysis of statics, startup settings,
global JVM state

See also Czajkowski et al MVM papers (in bibliography)

Spec requires very few global settings
All immutable: User identity, command-line settings

Native methods

JSR-121 does not strictly guarantee that bad JNI code
will not crash some or all Isolates

Implementations can make stronger guarantees, but at likely
cost of crossing address spaces for JNI calls

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Security
Per-Isolate Security Managers

Can arrange different managers and policies for
different Isolates

Common default security policy files

Checks for creating, controlling and
communication between isolates

IsolatePermission controls access (CDC&J2SE)

Aggregate runs under single User identity

No Unix-style substitute-user capability

Capability-style communication

Must have Link to communicate, and must have Isolate
handle to create Link

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Resource Management
Not specified in JSR-121

NO guarantees about scheduling, heap mgt, etc

Hints are possible via IsolateParameters

Current Sun Research

Sun technical report TR-2003-124 (in bib.)

More papers coming

Interactions with system-wide resource monitoring,
profiling, debugging APIs

JMX, JVMPI, JVMTI, etc

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Implementation Styles
One Isolate per OS process

Internal sharing via OS-level
shared memory, comms via IPC

class representations, bytecodes, compiled code, immutable
statics, other internal data structures

All Isolates in one OS address
space / process

Isolates still get own versions of all statics/globals
including AWT thread, shutdown hooks, ...

Isolates scheduled onto JVMs

LAN Cluster JVMs

Isolates on different machines, one admin domain.

“Simple RI”

MVM, Janos VM

SAP Research

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

API Design Goals
Minimality

The smallest API that fills need

Mechanism, not policy

Enable layered frameworks

Simple, clean semantics

For termination, communication, etc

Compatibility

No changes required in pre-JSR-121 code

Generality

Allow multiple mapping strategies to platforms

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

API Structure (base package)
Package javax.isolate

Isolate

IsolateParameters

Link

DataMessage

StatusMessage

CompositeMessage

New Interface

Message (just a tag)

New Exceptions

IsolateStartupException

Changes to existing
APIs

Documentation
clarifications

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

API Structure (additional pkgs)
javax.isolate.tbd
(CDC+)

IsolatePermission

ObjectMessage

javax.isolate.io (J2SE)

IOMessage interface

file/network I/O classes

javax.isolate.nio (J2SE)

ByteBuffer

ChannelMessage

javax.isolate.util (J2SE)

Visitor pattern & support

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Open API Design Issues
Base package deemed too big for CLDC

But don't want to abandon strong typing

Total package set deemed “overkill” even for J2SE

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Main Classes
public final class Isolate implements
Message

Create with name of class with a "main", arguments
(simple) or with IsolateParameters (two flavors of
additional parms)

Methods to start and terminate and query isolate, get
its parms and starting links

Message: interface tag for Link msgs

public class Link

A pipe-like data channel to another isolate

byte arrays, ByteBuffers, Strings and serializable types

SocketChannels, FileChannels and other IO types

Isolates, Links

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Starting Isolates
Isolate creation establishes existence

Isolates may (but need not) perform resource
allocation and internal initialization upon creation

Static initializers then main run at start

Isolates may continue initialization before running

All classes are loaded in new Isolate's context

Failures detected before running user code result
in exceptions at creation or start time

Cannot be sure whether the same exceptions will be
thrown at the same points in all Implementations

Other failures merely terminate the Isolate

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Running Independent Programs

void runProgram(String classname,
 String[] args) {

 try {

 new Isolate(classname, args).start();

 }

 catch (SecurityException se) { ... }

 catch (IsolateStartException ise) { ... }

 catch (Exception other) { ... }

}

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Configuration
Inheriting execution contexts

Different rules and defaults for IsolateParameters
(context, in/out/err bindings and start links)

Impossible to unify all of the ways to provide initial settings
while maintaining compatibility

Other Mechanisms

Contained Isolates may obtain additional configuration
parameters via JNDI or other means

Frameworks can supply a common main that
establishes context and then loads application

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Stopping Isolates
Preserves distinction between exit and halt

exit causes Isolate to run shutdown hooks etc

Does NOT guarantee eventual termination

halt causes sure, abrupt termination

Isolates may also terminate for the usual reasons

Aggregate shuts down when ALL Isolates do

Monitoring lifecycles

Receiving start, exit, terminated events

Not hierarchical

Parents may terminate independently of children
Can layer on methods to await termination

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Initializing and Monitoring

 Class Runner {
 Link data;
 Isolate child;
 CompositeMessage getMessage() { return data.receive(); }
 StatusMessage runStarlet(String mCls, String[] mArgs,
 String[] sec /*,...*/) {
 IsolateParameters context = new
 IsolateParameters(mCls, mArgs);
 context.setContext(
 “jsr121.exp.java.properties.java.security.manager”,
 sec);
 child = new Isolate(context);
 data = Link.newLink(child, Isolate.currentIsolate());
 StatusLink s = child.newStatusLink();
 child.start(new Link[] { data });
 return s.receive();
 }
}

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Communication and Control
App frameworks can
impose policies:

Hierarchical

Parent/child trees

Centralized

Ad-hoc

Can add monitoring for
application-specific
events and/or tie to
external monitoring

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Communicating (old API)
void appRunner() throws ... {

Isolate child = new Isolate("Child", ...);
Link toChild =
 Link.newLink(Isolate.currentIsolate(), child);
Link fromChild =
 Link.newLink(child, Isolate.currentIsolate());
app.start(new IsolateMessage[] {
 IsolateMessage.newLinkMessage(toChild),
 IsolateMessage.newLinkMessage(fromChild) });
toChild.send(IsolateMessage.newStringMessage("hi"));
String reply = fromChild.receive().getString();
System.out.println(reply);
child.exit(0);
Thread.sleep(10 * 1000);
if (!app.isTerminated()) app.halt(1);

}

class Child { ...
public static void main(...) {
 Link fromParent =
 Isolate.currentIsolateStartMessages()[0];
 Link toParent =
 Isolate.currentIsolateStartMessages()[1];
 String hi = fromParent.receive().getString();
 toParent.send(IsolateMessage.newStringMessage("bye"));
 System.exit(0);
} }

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Target Usage Patterns
Minimizing startup time and footprint

User-level "java" program, web-start, etc can start
JVM if not already present then fork Isolate

OS can start JVM at boot time to run daemons

Partitioning applications

Contained applications (*lets)

Applets, Servlets, Xlets, Midlet groups, etc can run as Isolates

Container utility services can run as Isolates

Service Handler Forks
ServerSocket.accept can launch handler for new client as
Isolate

Pools of "warm" Isolates

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

More Usage Patterns
Parallel execution on cluster JVMs

Java analogs of Beowulf clusters
Can use MPI over Links

Need partitioning and load-balancing frameworks

Fault-tolerance

Fault detection and re-activation frameworks

Redundancy via multiple Isolates

CSP style programming

Always use Isolates instead of Threads

Practically suitable only for coarse-grained designs

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Isolates and Mobile Code
Issues for current agent platforms

Trust and reliability

Resource exhaustion

Excessive thread creation

ClassLoader-based containment is difficult and imperfect

Scalability

Stronger safety and robustness guarantees with a separate
JVM per-agent, but resource intensive

Isolation can help but not (yet) a panacea

Agent platforms structurally similar to container and
*let model

Enables but doesn't provide resource control

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Code Migration

statics,
heap

th
re

ad

statics,
heap

th
re

ad

statics,
heap

th
re

ad

statics,
heap

th
re

ad

Aggregate

Aggregate

RMI etc

th
re

ad

th
re

ad

statics,
heap

Container

th
re

ad

th
re

ad

statics,
heap

Container

Agents

Agents

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Mobile Processes?
Java Threads explicitly share resources

So, for example, cannot always kill threads safely

Thread migration frameworks cannot deal with

Objects participating in multiple threads

Statics, AWT, shutdown hooks, Etc

At best, existing frameworks work when

You obey many unstated programming restrictions

You can live with a very loose definition of "work"
These aren't so much bugs as model mismatches

Hasn't led to mainstream acceptance

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Thread Migration

statics,
heap

th
re

ad

th
re

ad

th
re

ad

statics,
heap

JVM JVM

??

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Isolates and Mobile Processes?
Isolates form a natural unit of migration

Enforced lack of sharing removes many obstacles

Practical systems seem possible

Continued technical challenges

Multithreaded code

Use of global safe-points

Reconstructing execution context
Reconnecting to and forwarding resources

Between-Aggregate limitations
Non-transferable context: User identity, etc

Resource mismatches

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Isolate Migration

statics,
heap

th
re

ad

th
re

ad

th
re

ad

statics,
heap

Aggregate
th

re
ad

th
re

ad

statics,
heap

forwarder

Aggregate

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Constraints on Mobility
Distinguish communication/execution:

Within administrative domains

Between administrative domains

Isolates operate within domains that offer

Common security and management policies

Reliable communication and execution
"Reliable" means: failed action implies full Aggregate failure

Homogenous platform

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Relationship to π -calculus
Never a goal, more a happy accident

Supports arbitrary communication topologies with a minimum of
API

Eliminates the need for yet another naming and lookup scheme

Isolate and Link objects act as their own opaque identifiers

Enhanced security

More finely grained and dynamic access control than static type-based
permissions

Creation of a link and control of an isolate requires that a legitimate holder
of references has given out those references

Holds out prospect for formal proofs of security and correctness for
critical systems

But not complete

Currently links are unicast and point to point

Scope for extension to multicast, anycast and choice

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Mappings

Process

Channel

Parallel composition

new x e

x!y

x?y = e

Choice

Isolate

Link, LinkChannel, Isolate for
control and state messages

Creation of sibling isolates

x = Link.newLink(from, to); e(x)

x.send(y)

y = x.receive(); e(y)

IsolateMessageDispatcher,
LinkChannel with NIO Selectors

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

A Trivial Example (old API)
(new c (c!a | c?y f(y)))

class Parent {
 public static void main(String[] args) {
 Isolate firstChild = new Isolate("FirstChild", null);
 Isolate secondChild = new Isolate("SecondChild", null);
 Link l = Link.newLink(firstChild, secondChild);
 IsolateMessage[] startMessages =
 new IsolateMessage[] { IsolateMessage.newLinkMessage(l) };
 firstChild.start(startMessages);
 secondChild.start(startMessages);
 }
}

class FirstChild {
 public static void main(String[] args) {
 Link toSecond = Isolate.
 currentIsolateStartMessages()[0].getLink();
 Object a = ...;
 toSecond.send(IsolateMessage.newSerializableMessage(a));
}

class SecondChild {
 public static void main(String[] args) {
 Link fromFirst = Isolate.
 currentIsolateStartMessages()[0].getLink();
 f(fromFirst.receive().getSerializable());
}

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Another Example

Serve
r

Client

Printer

Serve
r

Client

Printer

Before interaction After interaction

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Example Continued (old API)
class Client {
 void doPrint() {
 Link replyLink = Link.newLink(server, self);
 clientToServer.send(
 IsolateMessage.newCompositeMessage(
 new IsolateMessage[] {
 IsolateMessage.newIsolateMessage(self),
 IsolateMessage.newLinkMessage(replyLink)
 }));
 Link clientToPrinter = replyLink.receive().getLink();
 usePrinter(clientToPrinter);
} }

class Server {
 void handleClient() {
 IsolateMessage[] m = fromClient.receive().getComposite();
 Isolate client = m[0].getIsolate();
 Link replyLink = m[1].getLink();
 Link clientToPrinter = Link.newLink(client, printer);
 IsolateMessage lm =
 IsolateMessage.newLinkMessage(clientToPrinter)
 replyLink.send(lm);
 serverToPrinter.send(lm);
} }

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Status
JSR 121 page at the JCP

http://jcp.org/jsr/detail/121.jsp

isolate-interest mailing list

http://bitser.net/isolate-interest/

Bibliography of related work

http://www.bitser.net/isolate-interest/bib.html

First public review implementations

http://www.cs.utah.edu/flux/janos/

Partial, no NIO

Derived from Kaffe, pre-Java2, strictly speaking not Java™

“many isolates to one JVM style”

Feature complete on two platforms, not included in J2SE 1.5

APIs refactored and moved to javax.

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Next Steps
Upgrade JSR-121 to JCP rev 2.6

Unanimous EG consent

One EG member JSPA upgrade

Involve Community

Expand EG

Create finished spec(s), RI(s) and TCK(s)

Rendezvous with umbrella specifications like J2SE
rev X.Y, JSR-185 (wireless)

Back to java.lang?

h
t
t
p
:
/
/
b
i
t
s
e
r
.
n
e
t
/
i
s
o
l
a
t
e
-
i
n
t
e
r
e
s
t

Credits
Sun Task API group

Greg Czajkowski

Bill Foote

Hideya Kawahara

Tim Lindholm

Glenn Skinner

Pete Soper

Past JSR-121 EG Members

Beth Hutchison, IBM

Jens Jensen, Ericsson

Peter Donald, Apache

Kumanan Yogaratnam, Espial

Current EG Members

Dat Doan, Espial

Richard Houldsworth, Philips

(Current EG cont'd)
Norbert Kuck, SAP

Doug Lea, SUNY Oswego

Michey Mehta, HPQ

Miles Sabin

Pete Soper, Sun (lead)

Patrick Tullmann, U of Utah

David Unietis, Oracle

Matthew Webster, IBM

